AI & Knowledge Apps Overview
AI & Knowledge apps provide intelligent data processing, knowledge management, and AI agent capabilities for your Django-CFG projects.
🧠 Knowledge Base App
Intelligent document processing and semantic search
- 📄 Document Processing - PDF, Word, text file ingestion
- 🔍 Semantic Search - Vector-based similarity search
- 💬 AI Chat Interface - Natural language queries
- 🏷️ Auto-tagging - AI-powered content categorization
- 📊 Analytics - Search patterns and content insights
Key Features
# Document ingestion and search
from django_cfg.apps.knowbase import DocumentManager, ChatInterface
# Add documents
manager = DocumentManager()
document = manager.add_document(
file_path="manual.pdf",
title="User Manual v2.1",
tags=["documentation", "help"]
)
# AI-powered search
chat = ChatInterface()
response = chat.query("How do I reset my password?")
print(response.answer) # AI-generated answer with sourcesKnowledge Base Components
Setup & Configuration
- Document upload and processing
- Vector embedding configuration
- Search index optimization
- Content categorization
💬 Chat & Search
- Natural language queries
- Contextual AI responses
- Source attribution
- Search result ranking
Data Integration
- Multi-format document support
- External data source connections
- API integrations
- Real-time synchronization
AI Agents App
Autonomous AI agents for task automation
- 🎯 Custom Agents - Build domain-specific AI assistants
- 🔧 Tool Integration - Connect agents to external APIs
- 🔄 Multi-step Workflows - Complex task orchestration
- 📊 Performance Tracking - Agent effectiveness metrics
- 🛡️ Safety Controls - Output validation and filtering
Key Features
# Create and deploy AI agents
from django_cfg.apps.agents import AgentBuilder, AgentOrchestrator
# Build custom agent
agent = AgentBuilder()
.with_model("gpt-4")
.with_tools(["web_search", "email_send", "database_query"])
.with_prompt("You are a customer service assistant...")
.build()
# Deploy agent
orchestrator = AgentOrchestrator()
result = orchestrator.process_request(
agent=agent,
request="Help customer with billing question",
context={"customer_id": 123}
)Integration Patterns
Knowledge-Powered Agents
# Combine knowledge base with AI agents
from django_cfg.apps.knowbase import KnowledgeRetriever
from django_cfg.apps.agents import KnowledgeAgent
# Agent with knowledge base access
kb_agent = KnowledgeAgent(
knowledge_base="company_docs",
model="gpt-4",
max_sources=5
)
# Query with context
response = kb_agent.query(
question="What's our refund policy?",
user_context={"customer_tier": "premium"}
)Smart Document Processing
Analytics & Insights
Knowledge Usage Tracking
# Track popular content and search patterns
from django_cfg.apps.knowbase import SearchAnalytics
analytics = SearchAnalytics()
# Popular queries
popular_queries = analytics.get_popular_queries(days=30)
# Content gaps
content_gaps = analytics.identify_content_gaps()
# User engagement
engagement = analytics.get_engagement_metrics()Agent Performance
# Monitor agent effectiveness
from django_cfg.apps.agents import AgentMetrics
metrics = AgentMetrics()
# Success rates
success_rate = metrics.get_success_rate(agent_id="customer_service")
# Response quality
quality_scores = metrics.get_quality_scores(days=7)
# Cost analysis
cost_breakdown = metrics.get_cost_analysis()Use Cases
Customer Support
Customer Support Automation
AI-powered support with knowledge base access
# Setup support agent with knowledge base
support_agent = KnowledgeAgent(
name="Support Bot",
knowledge_base="support_docs",
tools=["ticket_create", "escalate_to_human", "knowledge_search"]
)
# Handle customer queries automatically
response = support_agent.handle_query(
query="My payment failed, what should I do?",
customer_context={
"tier": "premium",
"last_payment": "2024-01-15",
"order_id": "ORD-12345"
}
)
# Response includes:
# - AI-generated answer
# - Relevant knowledge base articles
# - Suggested actions
# - Escalation trigger if neededSupport Automation Benefits Key advantages:
- ✅ 24/7 Availability - Instant responses any time
- ✅ Consistent Quality - Same high-quality answers every time
- ✅ Knowledge Access - Searches entire support documentation
- ✅ Smart Escalation - Automatically escalates complex issues
- ✅ Cost Reduction - Handles 70-80% of common queries
Best for:
- FAQ handling
- Order status inquiries
- Account management
- Troubleshooting guides
Documentation Assistant
Technical Documentation Assistant
Developer-focused documentation helper
# Setup developer documentation agent
dev_agent = KnowledgeAgent(
name="Dev Assistant",
knowledge_base="api_docs",
tools=["code_search", "example_generate", "api_lookup"]
)
# Answer technical questions
answer = dev_agent.query(
question="How do I authenticate API requests?",
context={
"language": "python",
"framework": "django",
"version": "4.2"
}
)
# Generate code examples
code_example = dev_agent.generate_example(
task="Create authenticated API request",
language="python"
)Developer Assistant Features Capabilities:
- 🔍 Smart Search - Finds relevant API documentation
- 💻 Code Generation - Creates working code examples
- 📝 Explanation - Explains complex concepts simply
- 🔗 Cross-references - Links related documentation
- ⚡ Quick Answers - Faster than manual search
Use cases:
- API integration help
- SDK usage examples
- Best practices lookup
- Troubleshooting guides
- Migration documentation
Content Creation
Content Creation & Curation
AI-powered content generation assistant
# Setup content creation agent
content_agent = AgentBuilder()
.with_model("gpt-4")
.with_tools(["research", "fact_check", "style_guide"])
.with_knowledge_base("brand_guidelines")
.build()
# Generate branded content
article = content_agent.create_content(
topic="Product Launch",
style="professional",
length="1000_words",
tone="enthusiastic",
keywords=["innovation", "enterprise", "scalability"]
)
# Content curation
curated = content_agent.curate_content(
sources=["blog_posts", "news_articles"],
theme="AI in Enterprise",
target_audience="C-level executives"
)Content Quality Assurance Important considerations:
- ⚠️ Fact-checking required - Always verify AI-generated facts
- ⚠️ Brand voice - Review for brand consistency
- ⚠️ Plagiarism check - Ensure originality
- ⚠️ Human review - Final editorial review recommended
Best practices:
- Use as first draft, not final copy
- Provide detailed brand guidelines
- Include fact-checking in workflow
- Maintain human oversight
Research & Analysis
Research & Analysis Assistant
Intelligent data analysis and research automation
# Setup research agent
research_agent = AgentBuilder()
.with_model("gpt-4")
.with_tools(["web_search", "data_analysis", "citation_tracker"])
.with_knowledge_base("research_papers")
.build()
# Conduct research
research = research_agent.research_topic(
topic="AI in Healthcare",
depth="comprehensive",
sources=["academic", "industry", "news"],
timeframe="last_2_years"
)
# Generate research summary
summary = research_agent.summarize_findings(
findings=research,
format="executive_summary",
length=500,
include_citations=True
)
# Identify trends
trends = research_agent.analyze_trends(
data=research,
metrics=["growth", "adoption", "innovation"]
)Research Automation Benefits Advantages:
- ✅ Speed - Hours of research in minutes
- ✅ Comprehensive - Covers multiple sources
- ✅ Citations - Automatic source tracking
- ✅ Trend Analysis - Identifies patterns
- ✅ Summaries - Executive-level insights
Perfect for:
- Market research
- Competitive analysis
- Literature reviews
- Trend identification
- Strategic planning
E-Commerce Assistant
E-Commerce Product Assistant
Smart product recommendations and customer engagement
# Setup e-commerce agent
shop_agent = KnowledgeAgent(
name="Shopping Assistant",
knowledge_base="product_catalog",
tools=["inventory_check", "price_compare", "recommendation_engine"]
)
# Product recommendations
recommendations = shop_agent.recommend_products(
customer_query="I need a laptop for video editing",
budget_range=(1000, 2000),
preferences={
"brand_preference": "none",
"must_have": ["16GB RAM", "dedicated GPU"],
"nice_to_have": ["lightweight", "long battery"]
}
)
# Answer product questions
answer = shop_agent.answer_question(
product_id="LAPTOP-123",
question="Can this laptop run Adobe Premiere Pro smoothly?",
customer_context={"use_case": "4K video editing"}
)
# Size/fit guidance
size_guide = shop_agent.provide_sizing_help(
product_id="SHIRT-456",
customer_measurements={"height": 180, "weight": 75}
)E-Commerce Features Capabilities:
- 🛒 Smart Recommendations - Personalized product suggestions
- ❓ Product Q&A - Answers specific product questions
- 📏 Size Guidance - Helps with size/fit decisions
- 💰 Price Comparison - Finds best deals
- 🔔 Stock Alerts - Notifies when items available
Benefits:
- Increase conversion rates
- Reduce returns (better sizing)
- Improve customer satisfaction
- 24/7 shopping assistance
- Personalized experience
Configuration
Knowledge Base Setup
# config.py
class MyProjectConfig(DjangoConfig):
# Enable knowledge base
enable_knowbase: bool = True
# AI configuration
openai_api_key: str = env.openai.api_key
embedding_model: str = "text-embedding-ada-002"
chat_model: str = "gpt-4"Agent Configuration
# Enable AI agents
enable_agents: bool = True
# Agent safety settings
agent_safety: AgentSafetyConfig = AgentSafetyConfig(
max_tokens=4000,
temperature=0.7,
content_filter=True,
output_validation=True
)Security & Safety
Content Filtering
- Input Validation - Sanitize user queries
- Output Filtering - Check AI responses for appropriateness
- Rate Limiting - Prevent API abuse
- Access Control - User-based permissions
Data Privacy
- Local Processing - Option for on-premise deployment
- Data Encryption - End-to-end encryption for sensitive content
- Audit Logging - Complete interaction logging
- Compliance - GDPR, SOC2 compliance features
See Also
AI & Knowledge Features
Knowledge Base:
- Knowledge Base Setup - Getting started guide
- Knowledge Base Configuration - Advanced configuration
- Data Integration - Connecting data sources
- Chat & Search - Search interface guide
AI Agents:
- AI Agents Introduction - AI agent development
- AI Django Framework - Complete AI framework
- Creating Agents - Build custom agents
- Agent Orchestration - Multi-agent workflows
LLM Integration:
- LLM Module - Multi-provider LLM integration
Configuration & Setup
Getting Started:
- Configuration Guide - Enable AI apps
- First Project - Quick start tutorial
- Built-in Apps Overview - All available apps
Advanced:
- Configuration Models - AI apps config API
- Type-Safe Configuration - Pydantic patterns
- Environment Variables - API key management
Tools & Deployment
Background Processing:
- Django-RQ Integration - Async document processing
- Background Tasks - Task management
CLI & Deployment:
- CLI Commands - AI command-line tools
- Production Config - Production AI setup
- Troubleshooting - Common AI issues
AI & Knowledge apps bring intelligent automation to your Django applications! 🤖