Skip to Content
DocumentationFeaturesBuilt-in AppsAI & KnowledgeOverview

AI & Knowledge Apps Overview

AI & Knowledge apps provide intelligent data processing, knowledge management, and AI agent capabilities for your Django-CFG projects.

🧠 Knowledge Base App

Intelligent document processing and semantic search

  • 📄 Document Processing - PDF, Word, text file ingestion
  • 🔍 Semantic Search - Vector-based similarity search
  • 💬 AI Chat Interface - Natural language queries
  • 🏷️ Auto-tagging - AI-powered content categorization
  • 📊 Analytics - Search patterns and content insights

Key Features

# Document ingestion and search from django_cfg.apps.knowbase import DocumentManager, ChatInterface # Add documents manager = DocumentManager() document = manager.add_document( file_path="manual.pdf", title="User Manual v2.1", tags=["documentation", "help"] ) # AI-powered search chat = ChatInterface() response = chat.query("How do I reset my password?") print(response.answer) # AI-generated answer with sources

Knowledge Base Components

Setup & Configuration

  • Document upload and processing
  • Vector embedding configuration
  • Search index optimization
  • Content categorization
  • Natural language queries
  • Contextual AI responses
  • Source attribution
  • Search result ranking

Data Integration

  • Multi-format document support
  • External data source connections
  • API integrations
  • Real-time synchronization

AI Agents App

Autonomous AI agents for task automation

  • 🎯 Custom Agents - Build domain-specific AI assistants
  • 🔧 Tool Integration - Connect agents to external APIs
  • 🔄 Multi-step Workflows - Complex task orchestration
  • 📊 Performance Tracking - Agent effectiveness metrics
  • 🛡️ Safety Controls - Output validation and filtering

Key Features

# Create and deploy AI agents from django_cfg.apps.agents import AgentBuilder, AgentOrchestrator # Build custom agent agent = AgentBuilder() .with_model("gpt-4") .with_tools(["web_search", "email_send", "database_query"]) .with_prompt("You are a customer service assistant...") .build() # Deploy agent orchestrator = AgentOrchestrator() result = orchestrator.process_request( agent=agent, request="Help customer with billing question", context={"customer_id": 123} )

Integration Patterns

Knowledge-Powered Agents

# Combine knowledge base with AI agents from django_cfg.apps.knowbase import KnowledgeRetriever from django_cfg.apps.agents import KnowledgeAgent # Agent with knowledge base access kb_agent = KnowledgeAgent( knowledge_base="company_docs", model="gpt-4", max_sources=5 ) # Query with context response = kb_agent.query( question="What's our refund policy?", user_context={"customer_tier": "premium"} )

Smart Document Processing

Analytics & Insights

Knowledge Usage Tracking

# Track popular content and search patterns from django_cfg.apps.knowbase import SearchAnalytics analytics = SearchAnalytics() # Popular queries popular_queries = analytics.get_popular_queries(days=30) # Content gaps content_gaps = analytics.identify_content_gaps() # User engagement engagement = analytics.get_engagement_metrics()

Agent Performance

# Monitor agent effectiveness from django_cfg.apps.agents import AgentMetrics metrics = AgentMetrics() # Success rates success_rate = metrics.get_success_rate(agent_id="customer_service") # Response quality quality_scores = metrics.get_quality_scores(days=7) # Cost analysis cost_breakdown = metrics.get_cost_analysis()

Use Cases

Customer Support

Customer Support Automation

AI-powered support with knowledge base access

# Setup support agent with knowledge base support_agent = KnowledgeAgent( name="Support Bot", knowledge_base="support_docs", tools=["ticket_create", "escalate_to_human", "knowledge_search"] ) # Handle customer queries automatically response = support_agent.handle_query( query="My payment failed, what should I do?", customer_context={ "tier": "premium", "last_payment": "2024-01-15", "order_id": "ORD-12345" } ) # Response includes: # - AI-generated answer # - Relevant knowledge base articles # - Suggested actions # - Escalation trigger if needed

Support Automation Benefits Key advantages:

  • 24/7 Availability - Instant responses any time
  • Consistent Quality - Same high-quality answers every time
  • Knowledge Access - Searches entire support documentation
  • Smart Escalation - Automatically escalates complex issues
  • Cost Reduction - Handles 70-80% of common queries

Best for:

  • FAQ handling
  • Order status inquiries
  • Account management
  • Troubleshooting guides

Documentation Assistant

Technical Documentation Assistant

Developer-focused documentation helper

# Setup developer documentation agent dev_agent = KnowledgeAgent( name="Dev Assistant", knowledge_base="api_docs", tools=["code_search", "example_generate", "api_lookup"] ) # Answer technical questions answer = dev_agent.query( question="How do I authenticate API requests?", context={ "language": "python", "framework": "django", "version": "4.2" } ) # Generate code examples code_example = dev_agent.generate_example( task="Create authenticated API request", language="python" )

Developer Assistant Features Capabilities:

  • 🔍 Smart Search - Finds relevant API documentation
  • 💻 Code Generation - Creates working code examples
  • 📝 Explanation - Explains complex concepts simply
  • 🔗 Cross-references - Links related documentation
  • Quick Answers - Faster than manual search

Use cases:

  • API integration help
  • SDK usage examples
  • Best practices lookup
  • Troubleshooting guides
  • Migration documentation

Content Creation

Content Creation & Curation

AI-powered content generation assistant

# Setup content creation agent content_agent = AgentBuilder() .with_model("gpt-4") .with_tools(["research", "fact_check", "style_guide"]) .with_knowledge_base("brand_guidelines") .build() # Generate branded content article = content_agent.create_content( topic="Product Launch", style="professional", length="1000_words", tone="enthusiastic", keywords=["innovation", "enterprise", "scalability"] ) # Content curation curated = content_agent.curate_content( sources=["blog_posts", "news_articles"], theme="AI in Enterprise", target_audience="C-level executives" )

Content Quality Assurance Important considerations:

  • ⚠️ Fact-checking required - Always verify AI-generated facts
  • ⚠️ Brand voice - Review for brand consistency
  • ⚠️ Plagiarism check - Ensure originality
  • ⚠️ Human review - Final editorial review recommended

Best practices:

  • Use as first draft, not final copy
  • Provide detailed brand guidelines
  • Include fact-checking in workflow
  • Maintain human oversight

Research & Analysis

Research & Analysis Assistant

Intelligent data analysis and research automation

# Setup research agent research_agent = AgentBuilder() .with_model("gpt-4") .with_tools(["web_search", "data_analysis", "citation_tracker"]) .with_knowledge_base("research_papers") .build() # Conduct research research = research_agent.research_topic( topic="AI in Healthcare", depth="comprehensive", sources=["academic", "industry", "news"], timeframe="last_2_years" ) # Generate research summary summary = research_agent.summarize_findings( findings=research, format="executive_summary", length=500, include_citations=True ) # Identify trends trends = research_agent.analyze_trends( data=research, metrics=["growth", "adoption", "innovation"] )

Research Automation Benefits Advantages:

  • Speed - Hours of research in minutes
  • Comprehensive - Covers multiple sources
  • Citations - Automatic source tracking
  • Trend Analysis - Identifies patterns
  • Summaries - Executive-level insights

Perfect for:

  • Market research
  • Competitive analysis
  • Literature reviews
  • Trend identification
  • Strategic planning

E-Commerce Assistant

E-Commerce Product Assistant

Smart product recommendations and customer engagement

# Setup e-commerce agent shop_agent = KnowledgeAgent( name="Shopping Assistant", knowledge_base="product_catalog", tools=["inventory_check", "price_compare", "recommendation_engine"] ) # Product recommendations recommendations = shop_agent.recommend_products( customer_query="I need a laptop for video editing", budget_range=(1000, 2000), preferences={ "brand_preference": "none", "must_have": ["16GB RAM", "dedicated GPU"], "nice_to_have": ["lightweight", "long battery"] } ) # Answer product questions answer = shop_agent.answer_question( product_id="LAPTOP-123", question="Can this laptop run Adobe Premiere Pro smoothly?", customer_context={"use_case": "4K video editing"} ) # Size/fit guidance size_guide = shop_agent.provide_sizing_help( product_id="SHIRT-456", customer_measurements={"height": 180, "weight": 75} )

E-Commerce Features Capabilities:

  • 🛒 Smart Recommendations - Personalized product suggestions
  • Product Q&A - Answers specific product questions
  • 📏 Size Guidance - Helps with size/fit decisions
  • 💰 Price Comparison - Finds best deals
  • 🔔 Stock Alerts - Notifies when items available

Benefits:

  • Increase conversion rates
  • Reduce returns (better sizing)
  • Improve customer satisfaction
  • 24/7 shopping assistance
  • Personalized experience

Configuration

Knowledge Base Setup

# config.py class MyProjectConfig(DjangoConfig): # Enable knowledge base enable_knowbase: bool = True # AI configuration openai_api_key: str = env.openai.api_key embedding_model: str = "text-embedding-ada-002" chat_model: str = "gpt-4"

Agent Configuration

# Enable AI agents enable_agents: bool = True # Agent safety settings agent_safety: AgentSafetyConfig = AgentSafetyConfig( max_tokens=4000, temperature=0.7, content_filter=True, output_validation=True )

Security & Safety

Content Filtering

  • Input Validation - Sanitize user queries
  • Output Filtering - Check AI responses for appropriateness
  • Rate Limiting - Prevent API abuse
  • Access Control - User-based permissions

Data Privacy

  • Local Processing - Option for on-premise deployment
  • Data Encryption - End-to-end encryption for sensitive content
  • Audit Logging - Complete interaction logging
  • Compliance - GDPR, SOC2 compliance features

See Also

AI & Knowledge Features

Knowledge Base:

AI Agents:

LLM Integration:

Configuration & Setup

Getting Started:

Advanced:

Tools & Deployment

Background Processing:

CLI & Deployment:

AI & Knowledge apps bring intelligent automation to your Django applications! 🤖