Skip to Content

AI Agents Commands

Commands for managing AI agents, orchestrator, and workflow automation.

Agent Creation

create_agent

Create new agent definitions or load pre-built templates.

python manage.py create_agent NAME INSTRUCTIONS [OPTIONS]

Arguments:

  • NAME - Agent name (unique identifier)
  • INSTRUCTIONS - Agent instructions/system prompt

Options:

  • --deps-type TEXT - Dependencies type (default: DjangoDeps)
  • --output-type TEXT - Output type (default: ProcessResult)
  • --model TEXT - LLM model to use (default: openai:gpt-4o-mini)
  • --category TEXT - Agent category
  • --timeout INTEGER - Execution timeout in seconds (default: 300)
  • --max-retries INTEGER - Maximum retry attempts (default: 3)
  • --public - Make agent public (accessible to all users)
  • --no-cache - Disable caching for this agent
  • --creator TEXT - Username of agent creator
  • --description TEXT - Agent description
  • --tags TEXT [TEXT...] - Agent tags (space-separated)

Creating Custom Agents

Basic Content Analyzer

python manage.py create_agent "content_analyzer" \ "Analyze content for sentiment, topics, keywords, and quality metrics. \ Provide detailed analysis including readability scores and recommendations." \ --category content \ --description "Comprehensive content analysis agent"

Business Rules Agent

python manage.py create_agent "business_rules" \ "Apply business rules, validate decisions, and ensure compliance with policies. \ Check all input against defined business logic and return validation results." \ --category business \ --public \ --model openai:gpt-4o \ --timeout 600

Data Processor

python manage.py create_agent "data_processor" \ "Process, clean, and transform data according to specifications. \ Handle data validation, normalization, and enrichment tasks." \ --category data \ --tags processing etl automation \ --description "Handles data transformation workflows" \ --max-retries 5

Customer Support Agent

python manage.py create_agent "support_agent" \ "Respond to customer inquiries with helpful, accurate information. \ Use friendly tone, provide step-by-step guidance, and escalate when needed." \ --category support \ --public \ --model openai:gpt-4o \ --description "24/7 customer support automation"

Code Review Agent

python manage.py create_agent "code_reviewer" \ "Review code for quality, security, and best practices. \ Identify bugs, suggest improvements, and check coding standards." \ --category development \ --tags code-quality security review \ --model openai:gpt-4o \ --timeout 900

Template Management

List Available Templates

python manage.py create_agent --list

Output:

📋 Available Agent Templates: ======================================== CONTENT: • content_analyzer: Analyze content sentiment, topics, and quality • content_generator: Generate high-quality content based on requirements • content_validator: Validate content quality and compliance DATA: • data_processor: Process and transform data • data_validator: Validate data quality and integrity BUSINESS: • business_rules: Apply business rules and logic • decision_maker: Make decisions based on criteria

Load Specific Templates

# Load single template python manage.py create_agent --load content_analyzer # Load multiple templates python manage.py create_agent --load content_analyzer data_processor business_rules

Load All Templates

python manage.py create_agent --load-all

Available Templates:

Content Templates

  • content_analyzer - Analyze content sentiment, topics, and quality
  • content_generator - Generate high-quality content based on requirements
  • content_validator - Validate content quality and compliance

Data Templates

  • data_processor - Process and transform data
  • data_validator - Validate data quality and integrity

Business Templates

  • business_rules - Apply business rules and logic
  • decision_maker - Make decisions based on criteria

Orchestrator Management

orchestrator_status

Display Django Orchestrator status and statistics.

python manage.py orchestrator_status [OPTIONS]

Options:

  • --detailed - Show detailed statistics
  • --agents - Show agent-specific statistics
  • --recent INTEGER - Show statistics for recent hours (default: 24)

Status Commands

Basic Status

python manage.py orchestrator_status

Output:

🤖 Django Orchestrator Status ================================================== 📋 Registry Status: Runtime Agents: 5 Available Patterns: 12 Loaded Agents: content_analyzer, data_processor, business_rules 📊 Database Statistics: Agent Definitions: 15 (12 active) Recent Executions (24h): 234 agents, 45 workflows Overall Success Rate: 94.5%

Detailed Statistics

python manage.py orchestrator_status --detailed

Additional output:

📈 Detailed Statistics: Execution Status (last 24h): Completed: 221 Running: 8 Failed: 5 Average Execution Time: 4.32s Total Tokens Used: 1,245,890 Total Cost: $2.4567

Agent-Specific Stats

python manage.py orchestrator_status --agents

Additional output:

🤖 Agent Statistics: Most Used Agents (last 24h): content_analyzer: 89 executions data_processor: 67 executions business_rules: 45 executions Agents by Category: Content: 3 Data: 2 Business: 2 Runtime Agent Metrics: content_analyzer: 89 runs, 96.7% success, 85.2% cache hit data_processor: 67 runs, 94.0% success, 72.3% cache hit

Custom Time Range

# Show statistics for last 48 hours python manage.py orchestrator_status --agents --recent 48 # Show statistics for last week python manage.py orchestrator_status --detailed --recent 168

Agent Configuration

Model Selection

Django-CFG supports multiple LLM providers:

# OpenAI models --model openai:gpt-4o --model openai:gpt-4o-mini --model openai:gpt-4-turbo # OpenRouter models --model openrouter:anthropic/claude-3.5-sonnet --model openrouter:google/gemini-pro-1.5 --model openrouter:meta-llama/llama-3.1-70b

Dependencies Configuration

Available dependency types:

# Django dependencies (default) --deps-type DjangoDeps # Content processing dependencies --deps-type ContentDeps # Data processing dependencies --deps-type DataProcessingDeps # Business logic dependencies --deps-type BusinessLogicDeps # Custom dependencies --deps-type CustomDeps

Output Types

Configure agent output format:

# Process result (default) --output-type ProcessResult # Analysis result --output-type AnalysisResult # Validation result --output-type ValidationResult # Custom result type --output-type CustomResult

Best Practices

1. Use Descriptive Names

# ✅ GOOD - Clear, descriptive name python manage.py create_agent "email_spam_detector" \ "Detect spam in emails using content analysis" # ❌ BAD - Vague name python manage.py create_agent "agent1" "Do stuff"

2. Provide Detailed Instructions

# ✅ GOOD - Detailed, specific instructions python manage.py create_agent "support_ticket_classifier" \ "Classify support tickets into categories: technical, billing, feature_request, bug. \ Analyze ticket content, urgency, and context. \ Return category, confidence score, and suggested priority." \ --category support # ❌ BAD - Vague instructions python manage.py create_agent "classifier" "Classify things"

3. Set Appropriate Timeouts

# Quick tasks --timeout 60 # 1 minute for simple classification # Normal tasks --timeout 300 # 5 minutes (default) for most tasks # Complex tasks --timeout 900 # 15 minutes for document processing --timeout 1800 # 30 minutes for batch operations

4. Use Tags for Organization

python manage.py create_agent "email_processor" \ "Process and route incoming emails" \ --tags email automation processing routing \ --category communication

5. Make Public Only When Appropriate

# Public agent - accessible to all users python manage.py create_agent "content_formatter" \ "Format content according to style guidelines" \ --public # Private agent - specific to creator/admins python manage.py create_agent "internal_audit" \ "Audit internal processes and compliance" \ --category compliance

6. Enable Caching for Repetitive Tasks

# Enable caching (default) python manage.py create_agent "faq_responder" \ "Respond to frequently asked questions" # Disable caching for dynamic content python manage.py create_agent "market_analyzer" \ "Analyze current market conditions" \ --no-cache

Workflow Examples

Setup Content Processing Pipeline

# 1. Load content templates python manage.py create_agent --load content_analyzer content_validator # 2. Create custom content generator python manage.py create_agent "blog_writer" \ "Generate engaging blog posts on given topics" \ --category content --public --model openai:gpt-4o # 3. Check orchestrator status python manage.py orchestrator_status --agents

Setup Customer Support Automation

# 1. Create ticket classifier python manage.py create_agent "ticket_classifier" \ "Classify support tickets by urgency and category" \ --category support --public # 2. Create response generator python manage.py create_agent "response_generator" \ "Generate helpful responses to customer inquiries" \ --category support --public --model openai:gpt-4o # 3. Create escalation detector python manage.py create_agent "escalation_detector" \ "Detect when tickets need human escalation" \ --category support --timeout 120

Setup Data Processing Pipeline

# 1. Load data templates python manage.py create_agent --load data_processor data_validator # 2. Create data enrichment agent python manage.py create_agent "data_enricher" \ "Enrich data with additional information" \ --category data --tags enrichment automation # 3. Monitor processing python manage.py orchestrator_status --detailed --recent 1

Monitoring & Debugging

Check Agent Execution

# Real-time status during execution watch -n 5 'python manage.py orchestrator_status'

Monitor Token Usage

# Check token consumption python manage.py orchestrator_status --detailed

Review Agent Performance

# Analyze performance metrics python manage.py orchestrator_status --agents --recent 168


AI Agents automate complex workflows! 🤖